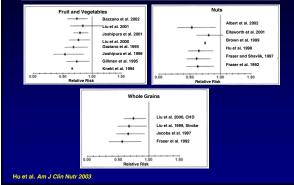


Understanding and Nourishing the Roots of Food Quality

Phytochemicals: From Agricultural Practices to Human Health

Jeffrey Blumberg, PhD, Kathleen Merrigan, PhD Chung-Yen Chen, PhD, Paul Milbury, MS

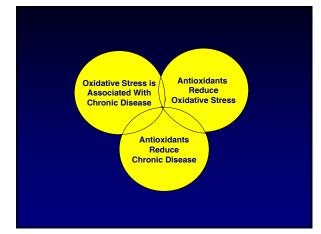
Friedman School of Nutrition Science and Policy Jean Mayer USDA Human Nutrition Research Center on Aging Tufts University



Are Organic Foods Better for Health?

- <u>Hypothesis 1:</u> Phenolics and related secondary plant metabolites are synthesized in response to enviornmental factors, including soil quality, irrigation, weed population, insect, and pathogen pressures.
- <u>Hypothesis 2</u>: Phenolics in foods grown by organic methods are significantly higher than in foods grown by conventional methods.
- <u>Hypothesis 3</u>: Foods rich in phenolics promote dietary intakes associated with health promotion and disease prevention.

Prospective Cohort Studies of Cardiovascular Disease and Consumption of Fruits and Vegetables, Nuts, and Whole Grains


Quercetin and Risk of All-Cause Cancer

<u>Quarti</u>	ile (mg/d)	RR	<u>95% Cl</u>
M	E		
		1.0	
1.5	1.8	0.93	0.79 - 1.09
2.5	2.9	0.97	0.82 - 1.14
3.9	4.7	0.77	0.65 - 0.92

P (trend) = 0.01

N = 9865 at risk, 1093 cases Adjusted for sex, age, geographic area, occupation, smoking, BMI

Knekt et al. Am J Clin Nutr 2002

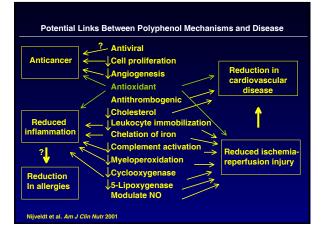
Chronic Degenerative Diseases Associated With Free Radical Damage

Adult respiratory distress syndrome Age-related macular degeneration Alcoholism Aluminum neurotoxicity Alzheimer's disease Cancer Cardiovascular disease Cataracts Diabetes Down syndrome Familial amyotrophic lateral sclerosis Hemorrhagic shock Inflammation Ischemia Pancreatitis Parkinson's disease Porphyria Rheumatoid arthritis

Antioxidant Defense Network

Endogenous ENZYMATIC

ENCTMATIC catalase (Fe) glutathione peroxidase (Se) superoxide dismutases (Mn, Cu/Zn) CELLULAR glutathione α-lipoic acid ubiquinone uric acid PROTEIN ceruloplasmin ferritin transferrin Exogenous ascorbic acid tocopherols/tocotrienols carotenoids simple phenols polyphenols


Bioactive Phenolics

Simple Phenols

acetophenones aldehydes benzoquinones phenolic acids phenylpropanoids phylacetic acids

Polyphenolic Compounds

chromones coumarins flavonoids naftoquinones stilbenes xanthones

Conventional vs. Organic Agriculture

Conventional Agriculture

Evolved in response to technological developments in mechanization/tillage, monoculture, synthetic fertilizer, irrigation, chemical pest and weed control, modified genetics, breeding

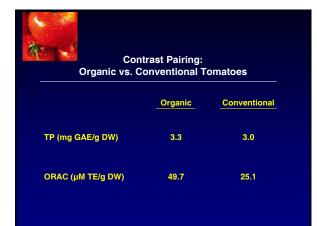
Organic Agriculture

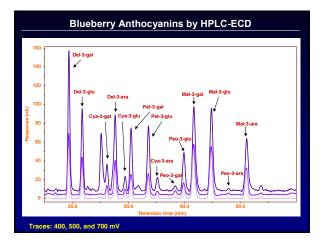
USDA National Organic Standards (2000) prohibit genetic modification, irradiation, fertilization with sewage sludge, synthetic fertilizers and pesticides (>3y)

Food	Findings	Reference
Marionberry strawberry, corn	↑ TP, vC	Asami et al JAFC 2003
Peach, pear	↑ ТР, ↑ РРО	Carbonaro et al <i>Food Chem</i> 2001
Peach, pear	↑ τΡ, ↑ ΡΡΟ ↑ νC, ↓ νE (peach) ↑ νE (pear)	Carbonaro et al JAFC 2002
<i>Vaccinium</i> berries, strawberry	↔ quercetin, kampferol, <i>p</i> -coumaric acid	Hakkinen et al Food Res Intl 2000
Chinese cabbage, spinach, Welsh onion,	↑ TAC, ↑ flavonols ↑ flavones	Ren et al Nippon SKKK 2001

green pepper

Comparisons between Conventional and Organic Agricultural Practices: Challenges


Climate Crop rotations Duration under production Inputs Perennials - age Prevalence of pests Soil Water Geographic region* Variety* Planting/harvest times*


ω Λ	1. Conventional - industrial
Chemical Inputs	2. Conventional - high input IPM
<u> </u>	3. Convention – low input IPM
ica	4. Organic – input substitution
E I	5. Organic – management intensive
ธิ	6. Organic – neglect/wild

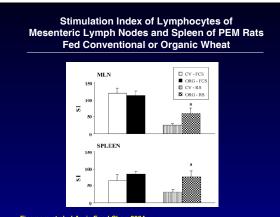
Organic vs. Conventional Tomatoes: Total Phenols and Total Antioxidant Capacity

	Organic	Conventional
TP (mg GAE/g DW)	$\textbf{3.45} \pm \textbf{0.6}$	3.1 ± 0.4
ORAC (µmol TE/g DW)	52.9 ± 18.0	41.7 ± 12.1
N = 10 pairs		

Organic vs. Conventional Blueberries: Total Phenols, ORAC, Flavonoids, Anthocyanins Organic Conventional TP (mg GAE/g DW) 18.4 ± 2.5 17.6 ± 1.8 ORAC (µmol TE/g DW) 317 ± 40 311 ± 22 15.5 ± 3.1 Total anthocyanins (mg/g DW)⁺ 14.5 ± 3.4* 2.0 ± 0.4 1.6 ± 0.3 Delphinidin-3-arabinoside (mg/g DW)* Peonidin-3-glucoside (mg/g DW)+ 1.0 ± 0.2 0.8 ± 0.3 Malvidin-3-glucoside (mg/g DW)+ $\textbf{0.8} \pm \textbf{0.7}$ $1.4 \pm 0.8^{*}$ N = 8 pairs *cyanidin-3-glucose equivalents *P≤0.05

Contrast Pairing: Organic vs. Conventional Blueberries		
	Organic	Conventiona
TP (mg GAE/g DW)	16.4	16.7
ORAC (μmol TE/g DW)	297	285
Total anthocyanins (mg/g DW)*	15.0	12.2
Delphinidin-3-arabinoside (mg/g DW)+	1.9	1.4
Peonidin-3-glucoside (mg/g DW)⁺	1.1	0.6
Malvidin-3-glucoside (mg/g DW)*	0.1	1.6

Organic vs. Conventional Cranberries: Total Phenols, ORAC, Flavonoids, Anthocyanins


	Organic	Conventional
TP (mg GAE/g DW)	$\textbf{27.5} \pm \textbf{1.3}$	$\textbf{26.5} \pm \textbf{0.6}$
ORAC (µmol TE/g DW)	451 ± 28	435 ± 20
Total anthocyanins (mg/g DW)*	12.2 ± 3.3	16.0 ± 3.0
cyanidin-3-galactoside (mg/g DW)⁺	3.1 ± 1.0	4.3 ± 0.6
peonidin-3-glucoside (mg/g DW)*	5.1 ± 1.4	6.8 ± 1.6
malvidin-3-glucoside (mg/g DW)⁺	0.3 ± 0.1	0.6 ± 0.1*
N = 3 Pairs ⁺cyanidin-3-glucose equivalents		*p≤0.05

Contrast Pairing: Organic vs. Conventional Cranberries

	Organic	Conventional
TP (mg GAE/g DW)	26.5	26.3
ORAC (µmol TE/g DW)	426	427
Total anthocyanins (mg/g DW)⁺	12.4	12.8
cyanidin-3-galactoside (mg/g DW)*	3.0	3.7
peonidin-3-galactoside (mg/g DW)*	5.3	5.2
malvidin-3-galactoside (mg/g DW) ⁺	0.3	0.4

+cyanidin-3-glucose equivalent

Plasma β -Carotene, Lycopene, and Vitamin C in Humans Fed Conventional and Organic Tomato Purees

Finamore et al. J Agric Food Chem 2004

conventional tomato puree
organic tomato puree

N: 21 females, 21-29 y Intervention: 100 g/d for 3 wk /3 wk WO

Caris-Veyrat et al. J Agric Food Chem 2004

2

Concentration of Microconstituents (mg/100 g) in Tomato Purees

microconstituent	conv	org	org vs conv
lycopene	15.57 ± 2.19	13.54 ± 0.60	NS
β -carotene	3.56 ± 1.02	1.71 ± 0.32	NS
vitamin C	22.53 ± 1.07	39.95 ± 0.44	P<0.0001
chlorogenic acid	7.2 ± 0.2	10.6 ± 0.3	P<0.001
rutin	2.30 ± 0.04	9.65 ± 0.28	P<0.0005
naringenin	4.83 ± 0.14	6.18 ± 0.18	P<0.005

Caris-Veyrat et al. J Agric Food Chem 2004

Phytochemicals: From Agricultural Practices to Human Health

Accuse not Nature! She has done her part;

Do Thou but Thine

Milton, Paradise Lost, 1667

