Qualitative and Nutritional Differences Between Organic and Conventionally Produced Processing Tomatoes

Diane M. Barrett, PhD
Fruit & Vegetable Products Specialist
University of California - Davis

Outline of Presentation
- Reviews on the topic
- Discrepancies in previous approaches
- Commercial Grower Studies
 - 2001 – Stahlbush Island Farms & OR Freeze Dry
 - 2003 – Small Planet Foods
 - 2006 – Campbell’s Soup
- Controlled On-Campus Studies
 - 1994-2005 – LTRAS, UC Davis
- Commercial & Controlled Comparison
 - 2004 & 2005 – Submitted to USDA, not funded

Reviews on the Topic
Nutritional Differences between Organic & Conventional
 Reviewed 150 comparisons published between 1924-1994, primarily German literature.
 Reviewed 34 publications 1946-1996.
 Reviewed 66 studies from 1924-2000, NZ focus.

Reviews on the Topic
Studies Conducted Prior to 2000
- Focus primarily on macronutrients rather than secondary plant metabolites
- Lack of control and diversity of experimental designs in studies does not allow for clear conclusions
- Need for
 - Better experimental design
 - Clearly targeted & appropriate nutrients
 - Consistent approaches

Discrepancies in Previous Approaches
- Controlled university plots vs. “real life” grower fields.
- Lack of information on production practices (grower experience, soil type, fertilizer inputs, herbicides and pesticides used, irrigation schemes, weather conditions during growing period etc.)
- Commodity grown (cultivar, age of plant/tree, maturity at harvest, harvest date etc.)
- Some commodities obtained from distribution center, retail store or food processing facility will little information on source.

Commercial Grower Studies
- Approach
 - Realistic in terms of scale, management practice and constraints
 - Large scale, more samples possible
 - Robust characterization of ecosystems
- 2001 – Stahlbush Island Farms & Oregon Freeze Dry (not tomatoes)
- 2004 – Small Planet Foods
- 2006-2008 – Campbell’s Soup
Stahlbush Island Farms & Oregon Freeze Dry Study (2001)
- Crops grown & processed in Oregon
- Documented soil type, crop age, previous crop, irrigation, chemical application, fertilizer rate & timing
- 3 crops - Marion blackberries, strawberries, corn
- 3 production practices - organic, sustainable & conventional
- 3 processing methods - frozen, freeze-dried and air-dried
- Publication is the most cited ever in J. Agricultural & Food Chemistry, Asami, Hong, Barrett & Mitchell, 2003

Results & Improvements
- Statistically higher levels of total phenolics in organic and sustainably grown crops
- Ascorbic acid higher in frozen organic and sustainably grown crops
- Improvements
 - Soil types should be matched
 - Desirable to have more than one grower, but should have growers use all production practices
 - More than 1 field replicate desirable
 - Should have a ‘fresh’ comparison

Small Planet Foods Study (2004)
Barrett, Diaz & Weakley – Submitted 4/06
- Growers (4)
- Farming methods (2)
- Field sites (8)
- Total samples = 4 x 2 x 8 = 64

Tomato Quality Attributes Determined
- °Brix
- Bostwick consistency
- pH
- Catsup yield
- Citric acid (T.A.)
- Color (LED, Agrtron, L, a, b)
- Ascorbic and Dehydroascorbic acid
- Lycopene
- Total phenolics
- Peelability
- Sensory – 200 consumers

Grower Differences
- Soil fertility - P, K, Mg, Ca, B, etc.
 - Theory – higher nutrient availability in conventional leads to increased plant growth; decreased C allocation to secondary plant metabolites (phenolics, vitamins)
 - N release differs - slow with organic manures/fast with synthetic conventional. Cover crops & microbial pop – more critical in organic
- Water-holding capacity
 - Related to soil texture & type – clay, loam, etc.
 - Limited water availability may lead to stress and increased production of polyphenolics in organic
- Geographical location
- Variety (different in each location)
Campbell’s Soup Study (2006-08)
- Processing tomatoes
 - 2 to 5 cultivars, including industry standards
 - 3 (2006) to 8-10 (2008) growers, matched fields
 - 3 year study
 - Soil sampling prior to and at harvest
 - Documentation of production inputs etc.
- Quality attributes & nutrients
 - pH, titratable acidity, SS, color, Bostwick consistency, serum viscosity, peelability
 - Lycopene, Ascorbic acid, total phenolics, specific flavonoids, fiber, individual sugars & pectin

Correlation of Commercial Grower & On-Campus Controlled Studies
- "Three Year Survey & Controlled Experiments on Nutritive & Quality Characteristics of Organic & Conventionally Grown California Tomatoes"
- Principal Investigators
 - Alyson E. Mitchell, Food Science & Tech
 - Steve Kafka, LTRAS Director/Agronomy
 - Diane M. Barrett, Dept. Food Science & Tech
 - Tim Hartz, Plant Sciences/Vegetable Crops
 - Ken Shackel, Plant Sciences/Pomology
 - Richard Plant, Agronomy/Biostatistics
- Submitted to USDA Integrated Organic Program in 2004 and 2005 – not funded

Controlled On-Campus Studies
- Approach
 - Complete control of inputs, irrigation etc.
 - Minimize confounding sources of variability
 - Smaller plots, less real-life
- 1994-2005 Tomato Samples
 - Long Term Research on Agricultural Systems (LTRAS), UC Davis
 - Tomato samples were air dried and stored
 - 2004/05 grant funded analysis by Mitchell (phenolics) and Barrett (lycopene & Vit C)

Experimental Design - USDA Integrated Organic Program Proposal
- Three year survey of grower fields
 - 8 fields each of organic & conventional
 - 4 sampling locations per field
 - Soil, plant and moisture sampling
- Research micro-plots at LTRAS
 - 4 levels of Nitrogen application
 - 4 levels of water stress
- "Quality" analysis – pH, titratable acidity, SS, Bostwick, color
- "Nutrients" analysis – ascorbic, lycopene, flavonoids and alkaloids

Experimental Designs - Desired Components
- Broader "systems" approach, with nested factorial sub-plots to study various treatments
- Years of experience in organic & conventional
- Representative, well-characterized and matched soil types. Soil sampling prior to starting.
- Cultivation practices documented and consistent over 5 years or longer
- Documented production inputs – fertilizer, pesticides, herbicides, etc.
- Use different cultivars, different growers, different regions and more than one location sampled per field

Multi-Disciplinary Approach
Understanding effects of cultural practices on food quality
- Genetics
- Soil Science
- Nutrient Quality of Organics
- Post-Harvest Practices
- Food Processing
- Experimental Design/Statistics
Long-term Systems Experiment: Design and Management

- Farmer knowledge
- Interdisciplinary team: farmers, researchers, & extension
- Agroecosystems experiment:
 1. Farmer current systems
 2. Innovative farmer system
 3. New systems to test
 Reductionist experiments (microplots, laboratory studies)
- Satellite trial 1
 Factorial design
- Satellite trial 2
 Factorial design

Drinkwater, modified from Snapp, 2003